Fall 2024

ESP 801: Physical, Chemical, and Biological Processes of the Environment

Michigan State University

ESP 801:

Physical, Chemical, and Biological Processes of the Environment

Course Meetings

Time: Monday and Wednesday. 12:40 pm - 2:00 pm

Location: 273 Giltner Hall

Office hours:

Time: Monday 2:00 - 3:00pm Location: 315 Natural Sciences

Course description¹: Interdisciplinary concepts in the natural sciences related to environmental problems, impacts to ecology and human health.

Recommended background: Bachelor's or Master's in appropriate discipline for specialization.

Course overview

ESP801 provides a broad overview of environmental science from the perspective of natural sciences and engineering. ESP801 is co-taught by four MSU instructors. The course will include the following components:

- 1. Four modules providing disciplinary perspectives from different areas of natural science and engineering: Environmental Geosciences, Biology/Ecology, Environmental Chemistry, and Environmental Engineering.
- 2. Each module will involve reading assignments, discussion, and other class participation components.
- 3. At the end of each module, each student will complete a required writing assignment (2 to single-spaced 3 pages, generally) that reflects on how the relevance of the specific discipline covered in the module for the capstone project (see below).
- 4. A team-based capstone project that will integrate the learning from the four course modules, and apply those disciplines toward current topics of scientific and policy interest. Teams will work with instructors to select current interdisciplinary topics for their project. The project's deliverable will be a policy paper that provides the scientific background and policy recommendations on the topic.

Last updated: August 19, 2024

https://reg.msu.edu/Courses/Request.aspx?SubjectCode=ESP&CourseNumber=801&Source=SB&Term=11 64#Results

ESP 801: Physical, Chemical, and Biological Processes of the Environment Michigan State University

ESP801 and ESP802 will build a foundation for an integrative experience in the ESP804 course where students, having taken ESP801 or ESP 802, work on team-based projects that span the social/natural science spectrum. The curriculum design reflects ESPP's objective of providing an interdisciplinary preparation to a cohort of students from diverse background pursuing an interest in environmental science and policy.

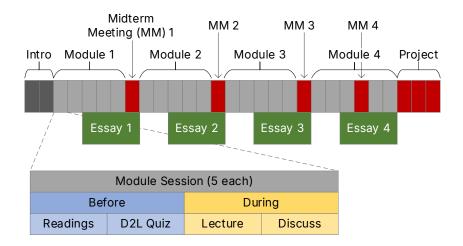
Course learning objectives

At the end of this course, students will be able to:

- 1. Describe scopes and principal methods of key natural science and engineering disciplines focused on the environment.
- 2. Understand the relevance of the natural science and engineering disciplines to one's own area of study.
- 3. Critically evaluate—in essay form—how each such discipline impinges on a specific problem of public policy relevance where natural and human systems are coupled and where an interdisciplinary approach is vital for solving the problem
- 4. As members of a student team and based on the knowledge gained in the course
 - a. Overview the current state of knowledge pertaining to the environmental challenge addressed by the essays
 - b. Identify knowledge gaps
 - c. Formulate research hypotheses to gain new knowledge needed for solving the problem
 - d. Synthesize the results of the team effort in the form of a professional-quality policy paper.

Instructors

Instructor, Department	Module Name	Research Focus	Contact Email
Hui Li, Plant, Soil and Microbial Sciences	Environmental Chemistry	Dr. Li's research focuses on fate, transport and impact of legacy and emerging organic contaminants in natural and engineered environments.	lihui@msu.edu
Alejandra Martínez Blancas, Plant Biology	Ecology	Dr. Martínez Blancas' research focuses on plant interactions and species coexistence.	mart2964@msu.edu
Anthony Kendall, Earth and	Environmental Geosciences	Dr. Kendall develops and applies models and field methods to understand the	kendal30@msu.edu


Environmental		landscape hydrologic cycle,	
Sciences		and how humans impact water	
		quantity and quality through	
		land use and climate change	
Wei Liao,	Environmental	Dr. Liao works on developing	liaow@msu.edu
Biosystems	Engineering	sustainable solutions to utilize	
and		organic wastes for value-	
Agricultural		added chemical and fuel	
Engineering		production.	

Modular Format

Like ESPP, this course is highly interdisciplinary, bringing four instructors from four different departments across MSU. Each instructor will lead a single course module. Each module consists of five meetings, assigned readings, short D2L quizzes for each reading, in-class discussions, and a brief essay assigned during the module and due prior to the start of the next.

Between each module, and prior to the beginning of the class, the students will meet with the coordinator, Dr. Kendall. We will focus these meetings on integrating the content and discussions across the modules with the semester-long course project. At one of these meetings, there will also be an extra-credit discussion.

The overall course flow is illustrated in the diagram below. Each box on the first line indicates a course meeting (there are 29 meetings in all). Overlaid on this timeline are the individual module essay assignments. Within each module session, there are beforemeeting assignments (reading, short quiz), and during-meeting activities (i.e. lecture and discussion).

Michigan State University

Readings and Participation

Prior to most class sessions, instructors will assign readings to be completed for in-class discussions. Module instructors will give specific instructions related to assigned readings and discussions. These discussions, along with course attendance, and participation related to each module will form the basis for the *Participation* grade (see below).

Module Essays

Each instructor will assign a brief essay during their module. This essay will focus on module content, methods, and language. The essay format and topics are at the discretion of the module instructors. Instructors will provide the students with an evaluation rubric along with the essay assignments.

Course Project

Starting in our first class meeting, we will begin work on a semester-long group project that culminates with a presentation to the class and instructors, followed by the submission of a complete policy paper. This project will focus on current and important issues of scientific and public interest. These issues will cross all four module disciplines (Environmental Chemistry, Ecology, Environmental Geosciences, and Environmental Engineering), and include substantial social and policy dimensions.

For these projects, students will form two groups, each selecting one of two broad topics. Instructors will cover aspects of these topics during their modules; however, the groups are expected to go beyond the content provided by the instructors to summarize the current state of the relevant science. We encourage students will leverage their backgrounds and interests to form cogent, persuasive policy arguments within their policy papers. Additionally, the content of the policy paper must be presented in a visually engaging manner.

Detailed rubrics for the course project elements will be distributed during a later midterm meeting class session.

Grading scheme

4.0>=90%; 90%>**3.5**>=85%; 85%>**3.0**>=80%; and so on

Intro + Midterm Meetings: 4% = 3% participation + 1% first assignment

Module 1: **19%** = 14% essay + 5% participation

Module 2: **19%** = 14% essay + 5% participation

Module 3: **19**% = 14% essay + 5% participation

Module 4: **19%** = 14% essay + 5% participation

Course project (policy paper): 20%

Extra credit assignment + discussion: 5% extra

Michigan State University

Course Schedule

Date		Topic	Instructor(s)			
Introdu	Introduction					
Mo	Aug 26	Course overview. Instructor introductions	All			
Wd	Aug 28	Research methods in sciences and engineering	Kendall			
Мо	Sep 2	Labor Day. University closed.				
Module	Module 1: Environmental Chemistry					
Wd	Sep 4	Plant nutrients (N,P) and eutrophication (1)	Li			
Мо	Sep 9	Plant nutrients (N,P) and eutrophication (2)	Li			
Wd	Sep 11	Trace elements and human health (1)	Li			
Мо	Sep 16	Trace elements and human health (2)	Li			
Wd	Sep 18	Emerging contaminants and impacts	Li			
Mo	Sep 23	Midterm meeting #1	Kendall			
Module 2: Biology/Ecology						
Wd	Sep 25	Intro. to Populations, Communities, and Ecosystems	Martínez Blancas			
Mo	Sep 30	Species Interactions	Martínez Blancas			
Wd	Oct 2	Biodiversity: Causes	Martínez Blancas			
Мо	Oct 7	Biodiversity: Consequences	Martínez Blancas			
Wd	Oct 9	Disturbance in Ecological Communities	Martínez Blancas			
Мо	Oct 14	Midterm meeting #2 – Dr. Gary Machlis Visit	Kendall			
Module 3: Environmental Geoscience						
Wd	Oct 16	Earth's Systems, Water Resources	Kendall			
Мо	Oct 21	Mid-term break. No classes				
Wd	Oct 23	Water Use and Quality	Kendall			
Mo	Oct 28	Oil and Critical Minerals	Kendall			
Wd	Oct 30	Climate Change Processes	Kendall			
Мо	Nov 4	Climate Change Adaptation and Mitigation	Kendall			
Wd	Nov 6	Midterm meeting #3	Kendall			
Module	Module 4: Environmental Engineering					
Мо	Nov 11	Mass and energy: fundamental concepts	Liao			
Wd	Nov 13	Water supply and treatment, wastewater	Liao			
Mo	Nov 18	Air quality and air pollution control	Liao			
We	Nov 20	Midterm meeting #4	Kendall			
Mo	Nov 25	Solid wastes and solid waste management	Liao			
Wd	Nov 27	Engineering in action (Field trip to the MSU ADREC)	Liao			
Finish a	Finish and Present Course Project					
Мо	Dec 2	Course project presentations	All			
Wd	Dec 4	Final paper work time	Kendall			
Wd	Dec 11	Final project paper due				

Last updated: August 19, 2024

Fall 2024

ESP 801: Physical, Chemical, and Biological Processes of the Environment

Michigan State University

Inclusivity

Every person, student or instructor, in this course belongs here. We come from a very wide variety of educational, disciplinary, cultural, linguistic, and experiential backgrounds. That diversity of backgrounds, along with our varied identities, are true strengths of this class. Embracing that diversity means better outcomes, both for the products we create and of the education we receive. We all think, learn, and speak differently, which requires open communication, and sometimes patience, to fully respect.

Use of Generative AI Technologies

You are welcome to use generative AI tools (e.g. ChatGPT, Gemini, etc) in this class as doing so aligns with the course learning goals. These tools can be excellent means of seeking specific general-purpose information, refining written English if needed, developing and testing broad policy concepts, etc. These tools still struggle to provide specific, primary literature-based information, so use this type of suggestion with caution—and always verify the responses you receive.

If you choose to use these technologies, you are responsible for the information you submit based on an AI query (for instance, that it does not violate intellectual property laws, or contain misinformation or unethical content). Your use of AI tools must be properly documented and cited to stay within university policies on academic integrity and the Spartan Code of Honor Academic Pledge.

Finally, each of the module professors may, at their discretion, prohibit the use of generative AI for specific assignments.

University Policies

k to university resource policies>